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A shear-flow-ballooning transformation is used to demonstrate that the presence of a poloidal shear flow can
suppress the ballooning interchange instabilities in a high-b straight tokamak. It is shown that, with the
toroidicity ignored, complete suppression of these instabilities requires the coexistence of both finite poloidal
Alfvén velocity shear and flow shear, in such a way that the latter is greater than the former. The DIII-D
parameters@Gohil et al., Phys. Rev. Lett.61, 1603~1988!# are used to compare the experimental results and
the above prediction, and an agreement is found.@S1063-651X~96!07811-7#

PACS number~s!: 52.35.Kt, 52.35.Ra

Deterioration of magnetic confinement in present day tok-
amaks is often caused by turbulence at the edges@1#. How-
ever, during the high-confinement~H mode! discharge the
confinement time may increase by a factor of several, indica-
tive of reduced turbulent transport at the edges. In striving
for understanding the underlying physics of theH mode,
investigations have focused on the connection of increasing
shear flow strength and the decreasing turbulence levels
@1–3#. Despite the fact that the origin of edge turbulence
remains an open question, it is generally believed that edge
turbulence tends to have~1! short wavelengths across the
field lines and long along the field lines,~2! large fluctuations
in the plasma density and, in high-b plasmas, also in the
magnetic fields.

Longer ~than the ion Larmor radius! wavelength edge
fluctuations may arise from the ballooning interchange mag-
netohydrodynamic~MHD! instability in the high-b regime of
operation@4–6#. Indeed, both sizable magnetic and density
fluctuations have been observed in the edges of DIII-D@6#;
moreover, evidence of strong correlation between suppres-
sion of the edge magnetic and density fluctuations and theH
mode has also been established@5#.

On the other hand, shorter wavelength fluctuations may
be due to drift waves and their variations. These perturba-
tions are primarily electrostatic and of low frequency, and
are observed in the low-b regime of operation. One of the
promising scenarios involving the drift waves is based on the
convective secular instabilities as the waves propagate to-
ward the tokamak edge from the core. It has been shown that
when a strong shear flow near the edge is present, the flow
can reflect the drift waves back to the core, thereby shelter-
ing the edge from the large disturbances of the convectively
unstable waves@7#.

In this paper, we will address the stabilization of the re-
maining high frequency edge magnetic fluctuations origi-
nated from the MHD ballooning modes@6#. The motivation
for this paper arises from the realizations that the poloidal
flow shear is comparable to the poloidal Alfve´n velocity
shear near the edges of the tokamaks during the low-
confinement→high-confinement (L→H) transition, the nu-
merical estimates of which are given at the end of this paper,
and that the edge-localized modes~ELMs!, responsible for
the temporary deterioration of theH mode into theL mode,
are believed to be driven by the pressure gradients@6#. We

show that the presence of both a strong shear flow and
sheared magnetic field is essential in suppressing the inter-
change instability. Such suppression can be interpreted as a
result of phase mixing both by differential convection and by
oppositely propagating Alfve´n waves.

Some preliminary notions of the parameter regime are
now placed in order. The thermal pressure near the edges of
tokamaks is much smaller than the axial field pressure
~bz[8pP/B z

2!1!, and the ratio of the azimuthal field also
much smaller than the axial field~e[Bp/Bz!1!. Since one is
interested in some radially localized region, a strip near the
magnetic resonant surface where the ballooning mode lo-
cates, the azimuthal magnetic fieldBp and the shear flowVyŷ
may be expanded in the Taylor’s series up to the linear terms
in radius: Bp(x)5By1By8x andVy(x)5Ax. We may thus
use the reduced MHD scaling to approximate the perturba-
tions of the field and the flow, with the latter having a small
component along the axial direction@8#. The primary insta-
bility driving source is the pressure gradient for the balloon-
ing modes and thus included in the appropriate reduced
MHD equations is the leading order pressure gradient term.
To this order, the plasma motion can be assumed incom-
pressible. The toroidal field curvature is ignored for simplic-
ity, but we will return to discuss its importance in the end of
this report.

We assume that the perturbations are proportional to
exp(2 ivt1 ikyy1 ikzz) with kz/ky;2Bz/By . Combining
the preceding considerations, it is straightforward to derive
the linearized equations which can be cast into a second-
order ordinary differential equation for the stream functionf
of the perturbed velocity perpendicular to the magnetic field
~dv[b̂3“f and b̂ the local field direction! @9,10#

d

dx S ~v2kyAx!22
~k–B!2

4pr D df

dx
2ky

2S ~v2kyAx!2

2
~k–B!2

4pr Df2
2kz

2~2P08!

rr
f50, ~1!

whereP08[dP0 /dr. We have ignored the higher-order terms
in the expansion of smallbz , so that slow and fast magne-
tosonic waves have been eliminated.

The difficulty associated with a differential equation such
as Eq. ~1! is that there exists singular points when
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v5kyAx6kB/4pr. Physically, these correspond to the
wave-flow resonances, and often, but not always, lead to
wave damping. It is unclear how, and to what extent, the
wave-flow resonances can affect a system that has an intrin-
sic instability driving source such as the bad curvature in this
case. In Sec. I, a shear-flow-ballooning representation is in-
troduced that helps resolve this difficulty.

I. SHEAR-FLOW-BALLOONING TRANSFORMATION

Ballooning representation@11# of the MHD perturbation
was originally invented to circumvent a similar difficulty
mentioned in the last paragraph. It is an eikonal approxima-
tion near the magnetic resonance surface~k–B50!, where the
fast radial variation is separated from the slow dynamics
along the field line. In addition, within a thin strip near the
magnetic resonance surface where this approximation holds,
one finds it more convenient to adopt a Cartesian coordinate,
wherex is perpendicular to the flux surface,y in the poloidal
direction, andz in the toroidal direction.

In the presence of a shear flow, we may adopt, in addition
to the ballooning representation, a shear-flow coordinate
@12–15#. The fast variations of the perturbation in space and
time can be extracted with the phase factor exp@ikxx1ikz(z
1xyBzBy8/By

2)2ikyAxt#. The slow variation is contained in an-
other amplitude factorg(y,t), which depends only on the
coordinatey and the timet in this eikonal representation.

That is, f(x,t)5g(y,t)eikxx1 ikz(z1xyBzBy8/By
2)2 ikyAxt. In this

representation, convertion of the differentiation and the vari-
ables goes as follows:2iw→2 ikyAx1]/]t, iky
→2 ikzBz/By(x)1]/]y and d/dx→ i (kx2kyAt1kyBy8y/
By). Note that when the flow shearA is absent, we recover
the usual ballooning transformation.

Thus Eq.~1! is transformed to become

]

]t
@~ax1At1Sy!211#

]g

]t

2VAy
2 ]

]y
@~ax1At1Sy!211#

]g

]y
2S 2az2~2P08!

rr Dg50,

~2!

where S[2By8/By , VAy
2 [B y

2/4pr, ax[2kx/ky , and
az[kz/ky . Apparently, this equation is a hyperbolic partial
differential equation describing the wave propagation along
the field lines; most noticeably, Eq.~2! contains no apparent
wave-flow resonances. Reconstruction of the periodicity of
the perturbation around the minor radius (y) demands thatg
vanishes aty56` at every instant of time@11#. As will be
shown later, this requirement is crucial in differentiating the
unstable modes from the stable ones.

The variable coefficients in Eq.~2! depend only on a par-
ticular combination ofy and t. It is more convenient to de-
fine new coordinates~t,h! in place of (t,y), where t[t
2Sy/A and h[t1Sy/A1ax/A. Thus, we may extractegt

from the perturbation: g(t,h)5h(h)egt, whereg.0. The
remaining amplitude factorh~h! satisfies the following
equality:

S d2

dh2 1Fg2~12J2!2
h0
2

h21h0
2

1
2az

2~2P08!

rr~h21h0
2!~12R2!S2VAy

2 G D f ~h!50, ~3!

where f (h)[h(h)Ah21h0
2exp(2gJh), R[uA/SVAyu,

J[(11R2)/(12R2) andh0
2[1/A2. By settingg50, one ob-

tains an equation similar to the familiar one that gives rise to
the Suydam’s criterion for the interchange instability. At first
glance, a generalized Suydam’s criterion may seemingly ap-
ply, where the existence of an exponentially growing local-
ized mode requires that~2az

2P08)/rr(12R2)S2VAy
2 .1/8 in

the limit h0→0. However, the above condition only warrants
localization of the modes in the new coordinateh, and not
necessarily in the actual spatial coordinatey. To satisfy
mode localization iny, further consideration is needed. Pro-
vided that the functionf ~h! is spatially bound, the asymp-

totic behavior ofh~h! for largeh is egh(J6AJ221). Together
with the factoregt, the behavior ofg~t,h! for largey goes as
eg(k12)t1gky/R, where

k[2S R2

12R2 6U R

12R2U D .
A straightforward algebra shows that localization of

g~t,h! in y requires that the parameter

R2,1, ~4!

i.e, A2,(By8)
2/4pr, or A2,(VAy8 )2. That is, the flow shear

must be smaller than the Alfve´n velocity shear. Note that
whenR2,1, we havek12.0 and the exponent of the time
dependence ing is always positive. It is only for a sub-
Alfvénic velocity shear can the perturbations be bounded in
space and grow exponentially in time. This conclusion is
independent of the sign of the flow shear relative to the Al-
fvén velocity shear. When the flow shear becomes super-
Alfvénic, the eigenmode analysis fails, spatially bound dis-
crete modes are absent and the perturbations in such a system
form a continuum, yielding algebraic time dependence.

II. TRANS-ALFVE´NIC FLOW SHEAR „R2<1…

In fact, there exists an additional condition to ensure spa-
tially bound solutions. In deriving inequality~4!, we have
assumed that the functionf ~h! is spatially bound, which is
not automatically satisfied for any value ofg. Existence of a
boundf ~h! requires that the term in the square bracket in Eq.
~3! be positive ath50, which in turn imposes a condition for
the value of g not to exceed an upper boundgmax

5QA12R2/R, whereQ[A(2az
2R2P08)/2rr. The above ex-

pression is evaluated using the limith0→0. The standard
method of the WKB quantization for bound solutions can be
used for an accurate evaluation ofg.

We shall now investigate the regime whenR2→1 from
below in an attempt to understanding the nature of the
Alfvénic transition. Unstable perturbations consist basically
of two Alfvén waves propagating along the field lines oppo-
sitely. Due to the flow convection, the asymptotic spatial
structure of the perturbation appears very different on either
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side of the expanding wave packet. On the wave front par-
allel to the flow ~y.0!, the propagation leading edge is

sharp, behaving ase2Qy/A12R2. By contrast, on the trailing
side ~y,0! the wave form is smoothly varying as

e2QyA12R2. The width of the leading edge scales as~12R2!1/2

and whenR251, the leading edge becomes infinitely sharp, a
shocklike singular structure. Hence whenR2 passes beyond
unity such a solution can no longer exist. The discrete nor-
mal modes are lost and the only solutions are in the con-
tinuum to be discussed later.

Using the terminology of relativity, one may understand
the loss of discrete spectra to be due to a loss of casual
contact by Alfvén waves within the perturbed region. For a
sub-Alfvénic flow shear, the coordinateh remains a space-
like variable, and perturbations within the domain can still
communicate. However, for a super-Alfve´nic flow shear, the
coordinateh becomes timelike andt spacelike; perturbations
are convected away by the rapid flow and communications
between perturbations on either side of the wave packet be-
come impossible. This point is manifested by the absence of
a resonant cavity in selecting discrete normal modes. With-
out a resonant cavity, the originally unstable modes in the
continuum must be phase mixed, thereby greatly reducing its
ability to grow.

III. SUPER-ALFVÉ NIC FLOW SHEAR „R2>1…

With t becoming spacelike andh timelike for a super-
Alfvénic flow shear, one may extract the sinusoidal depen-
denceeivt from g~t,h! by replacingg by iv, corresponding
to wavy perturbations along the field lines. In fact, for a finite
v, one may easily show, by solving Eq.~3!, that the asymp-
totic behavior ofh~h!, except for the sinusoidal dependence,
goes ash21 at largeh. For any finite time,h is localized in
y and therefore such a solution satisfies the ballooning
boundary condition in recovering the periodic solution
around the minor radius. These solutions represent neutrally
stable traveling wave packets.

A special case for the super-Alfve´nic flow shear is the
limit whereg50. Again, Eq.~3! has no singularity except for
h→`. At largeh, Eq. ~3! reads

S d2

dh22
W

h2D f50, ~5!

where W[4Q2/(R221).0 for R2.1. It follows that
h(h)5h21f (h);ha, wherea[20.5(16A114W). These
solutions are either monotonically increasing in space and
therefore unphysical, or bound in both space and time. The
latter is again a stable traveling solution.

Finally it is instructive to consider both limits:v50 and
S→0. This situation exists when the magnetic resonant layer
~S50! has a finite width. One finds that there is no mixing
between the space coordinatey and timet in Eq. ~2!. The
solution has algebraically growing time dependence@16,17#.
The indicial index becomesa50.5(A114W021), where
W052a z

2(2dP0/dr)/rrA
2 and the kinetic energy density

grows ast2~a11!, contributed primarily by they component
of the perturbed velocity.

However, how can this solution reconcile with the bal-
looning boundary condition thatg vanish aty→6`? Note

that whenS50, the only y dependence inf is through
eikyy, which is in itself periodic~in y! around the minor
radius. Hence, there is actually no need to employ the bal-
looning transformation in this case and the condition thatg
vanish aty56` required by the ballooning formulation is
thus avoided.

The limit S50 demonstrates an important point. It shows
that without magnetic shear the shear flow alone cannot com-
pletely stabilize the interchange instability. Assistance from
the magnetic shear for stabilizing the algebraic growth may
not be intuitively obvious since even a tiny amount of mag-
netic shear can help stabilization. The key physics underly-
ing the magnetic-shear-assisted stabilization has to do with
the additional phase mixing caused by oppositely propagat-
ing Alfvén waves along the field lines. Even with a tiny
magnetic shear, considerable wave mixing at the resonant
surface can be produced, thereby suppressing the weak alge-
braic growth. The regionS50 of a finite width is located
where the toroidal current vanishes and is about to reverse
the sign. In this circumstance, one recovers the well known
example of Rayleigh-Taylor instability in an unstably strati-
fied atmosphere under the wind shear@16#.

In sum, we have shown that linear shear flows can stabi-
lize the MHD interchange instability, consistent with the pre-
vious works where the toroidal shear flows are considered
@12–15#. To achieve stabilization, we find that two condi-
tions must both be met. First, the flow shear must be suffi-
ciently strong, so strong that it is greater than the poloidal
Alfvén velocity shear. Second, the poloidal Alfve´n velocity
shear, however, cannot be arbitrarily small. When the first
condition is not met, the interchange modes remain exponen-
tially unstable although their growth rates are reduced by the
shear flow. When the second condition is not satisfied, the
interchange modes can, though significantly suppressed, still
become algebraically growing.

To gain a better idea as to how suitable the present analy-
sis may apply to the existing tokamaks, we take the param-
eters of the DIII-D tokamak@6# as a typical example. During
theL→H transitions of the DIII-D, the electron number den-
sity is about 431013 cm23, the toroidal field 23104 G, and
the toroidal current 1 MA. With the minor and major radii
abouta;65 cm andR;170 cm, respectively, and the effec-
tive ion mass;4 mp , the poloidal Alfvén velocity shear
SVAy is estimated to be about~1.5–2!3106 sec21. On the
other hand, the poloidal flow shearA is measured at about
1.63106 sec21 within a spatial range of 2.5 cm centering
around the location 1.5 cm interior of the plasma edge@18#.
These estimates show that the edge of DIII-D is approxi-
mately in the regime whereR;1, the marginally stable,
trans-Alfvénic shear regime. It is of interest to note that dur-
ing the stable operation of theH mode, the edge electron
density increases in time@3# as a result of better confinement.
According to the preceding analysis, this tendancy decreases
the Alfvén speed and pushes the edge plasmas into an even
more stable regime, thereby sustaining a long-lived~.100
ms! H mode.

The present work, however, does not include the effects
of toroidicity. It hence may not be compared, in quantitative
details, with the stabilization of edge tokamaks during the
high-b H-mode discharge. Nevertheless, based on the idea
developed in this paper that differential convection intro-
duces stabilizingphasemixing, we expect that convection
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around the poloidal direction also should give rise to addi-
tional stabilizingspatialmixing in a toroidal configuration.
Perturbations in the bad curvature region can no longer stay
localized and must be convected into the good curvature re-
gion; that is, spatial mixing can average out the negative and
positive potential energy, thereby reducing the instability
driving source for an otherwise localized perturbation. We
therefore anticipate that the toroidicity can somewhat
strengthen the stability criterionR.1.

The above notions of convective stabilization have actu-
ally been demonstrated in a previous work addressing the
effects of the toroidal shear flows in toroidal devices by
adopting the same shear-flow-ballooning representation.
@15#. Upon including the toroidicity in the presence of a to-
roidal flow, the analysis must take into account the plasma
compressibility@14#. As a result of the rich physics involving
the toroidicity and compressibility, extensive numerical inte-

gration must be employed in the studies formulated as an
initial-valued problem@15#, in contrast to the present simpler
case for which analytical quantitative results can be obtained
and the physics of flow shear explicitly demonstrated. It
turns out that not only do the numerical results yield consis-
tent criteria~modified to incorporate with the toroidal flow!
for the flow-shear stabilization as the one obtained here, but
the aforementioned convective stabilization is also clearly
shown by observing in the results periodic bursts of pertur-
bations around the torus.
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